Generating Discrete Events

Wednesday, March 05, 2014 12:51 PM

Last time. Generating continuous RVs

: Generating discrete events

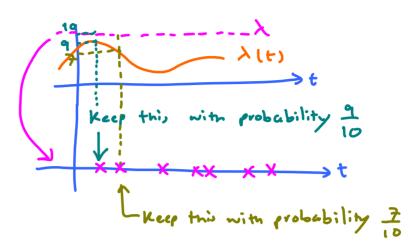
Discrete Event Simulations

Poisson Process (PP)

There are two types of this

NHPP: \(\lambda \) is dependent on t

Recall that the times between successive events in HPP are independent exponential with parameter &.

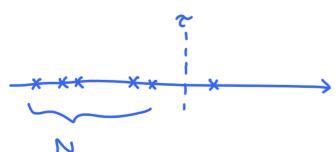

To generate HPP, we simply find the cumulative sum of these exp. RVs) to get the time of occurrence for events. Easily generated by $-\frac{1}{\lambda}ln(U)$

Extension of HPP concept

(1) NHPP

- Thinning (ii) Generate HPP with rate λ iii) Keep the event that occurs at time t with

- random sampling (iii) Keep the event that occurs at time t with


2) Renewal Processes

exponential - another pdf

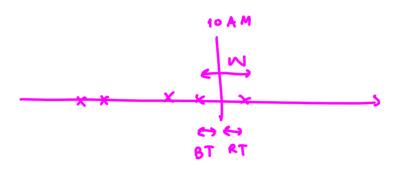
(3) Poinson RV

Recall that if we count the & events that occur in a time interval of length T in a Poisson process with rate >

then this number ~ $P(\Delta \tau)$.

(4) Markov chains discrete time - Back to Bernoulli trials

(ontinuous time)


Markov chains

discrete time - Back to Bernoulli trials

- allow more than 2 passibilities

- allow dependency among trials

Waiting - time paradox

You are more likely to experience longer interval.

(which implies longer time to wait than you might expect.)

Suppose the time btm adjacent bus arrivals is $\sim \mathcal{E}(\lambda)$. Then, the average time = $\frac{1}{\lambda}$.

Turn out that when you consider the interval that you actually falls into, the average length of it is $\frac{2}{\lambda}$.

This is because you are more likely to fall into larger intervals.